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NUMERICAL SOLUTION OF THE TWO-DIMENSIONAL PROBLEM OF DIRECTED 

CRYSTALLIZATION 

V. P. ll'in and L. V. Yausheva UDC 518.3 

In [1-4] mathematical models of the process of directed crystallization were constructed 
and investigated in a one-dimensional approximation. However, these models do not explain 
such experimentally observed phenomena as the inhomogeneity of the distribution of an impur- 
ity over a transverse cross section of the ingot. To clarify the structure of the concentra- 
tion profile, the present article considers a mathematical model of the process of directed 
crystallization in a two-dimensional approximation, taking account of diffusion in the melt~ 
Integral balance relationships are used to construct two difference schemes and to obtain 
evaluations of the error of the difference solutions. On the basis of numerical calculations 
an analysis is made of radial inhomogeneity for different configurations of the crystalliza- 
tion front, depending on different values of the crystallization rate v and the equilibrium 
coefficient ko [5]. 

We assume that the thermal characteristics of the substance depend only slightly on the 
concentration of the impurity and that the diffusion coefficient depends on the temperature. 
The problem of the redistribution of the impurity can then be considered separately from the 
thermal Stefan problem, assuming that the configuration of the front at every moment of time 
z = z(r, t) and the rate of displacement v are known. 

We consider an ingot of cylindrical form of radius R and finite length L s. The inter- 
face between the two phases and the boundary conditions are assumed to be symmetrical with 
respect to the axis. We shall assume that the principal mechanism of mixing in the melt is 
diffusion. Then the distribution of the concentration of the impurity in the region z(r, 
t) < z < L s (0 < r < R) obeys the diffusion equation 

Ou D O( O~r ) O'u ( 1 )  
Ot r Or r + D 0 7  

and the initial condition 

u ( r ,  z ,  O) = Uo = c o r o t .  
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At the lateral and end surfaces and the axis of symmetry we give the condition of absence of 
flow: 

Ou/On = O. ( 2 )  

In the crystallizing phase in the absence of diffusion the concentration of the impurity is 
determined from the condition of equilibrium of the phases at the front: 

u ,~ ,  t~ z(r, t)) = kou(r, t, z(r,  t)),  (3)  

where ko is the equilibrium distribution coefficient. 

At the surface of the crystallization front, by virtue of the nonequilibrium crystal- 
lization conditions [5], we have the boundary condition 

--DOu/On q- VN(l - -  k0)u = 0, (4)  

w h e r e  n i s  a n  e x t e r n a l  n o r m a l  t o  t h e  s u r f a c e  S o f  t h e  c r y s t a l l i z a t i o n  f r o n t ;  v N i s  t h e  n o r m a l  
componen t  o f  t h e  v e l o c i t y .  

Methods  f o r  t h e  d i f f e r e n c e  a p p r o x i m a t i o n  o f  t h e  p r o b l e m s  u n d e r  c o n s i d e r a t i o n  h a v e  b e e n  
i n v e s t i g a t e d  by  a number  o f  a u t h o r s  ( s e e  [6]  and t h e  l i t e r a t u r e  c i t e d  t h e r e i n ) .  The p r e s e n t  
a r t i c l e  c o n s i d e r s  a somewhat  d i f f e r e n t  a p p r o a c h ,  b a s e d  on t h e  a p p r o x i m a t i o n  o f  b a l a n c e  r e l a -  
t i o n s h i p s .  

We i n t r o d u c e  i n  t h e  i n g o t  t h e  u n i f o r m  f i x e d  g r i d  z j  = j h z  + h z / 2 ,  r i  = i h r  + h r / 2 ,  h r  = 
R/(M + 1 / 2 ) ,  hz  = L s / ( N  + 1 / 2 ) ,  whe re  M and N a r e  t h e  numbers  o f  p o i n t s  o v e r  t h e  r a d i u s  and 
length of the ingot, respectively. The calculating region here will include the internal 
cells and the boundaries, arranged along the lateral and end surfaces, the axis of symmetry, 
and the crystallization front. 

We integrate Eq. (I) over the cell Di, j in the interval of time (in, tn + T); we apply 
the Gauss--Ostrogradskii formula and, as a result, obtain the balance relationship 

~+~ 

[u(t. + ~) - -  u (t~)l dV = dt  v~-~as, 
i,j(tn'~) tn Si,j(t) 

where  V i , j ( t )  i s  t h e  vo lume  and S i , j  ( t )  t h e  s u r f a c e  a r e a  o f  t h e  c e l l .  I f  a mesh  p o i n t  o f  
t h e  g r i d  i s  l o c a t e d  n e a r  a c u r v e d  f r o n t  w e u s e  two me thods  f o r  f o r m i n g  t h e  c e l l ,  d e p e n d i n g  
on t h e  a r r a n g e m e n t  o f  t h e  a d j a c e n t  mesh p o i n t s  ( F i g .  l a ,  b ) .  The i m p l i c i t  d i f f e r e n c e  scheme 
a p p r o x i m a t i n g  (5) h a s  t h e  f o r m  

m 
. . + ,  y{ 
~i,~ --yi,SJ i ,s " T ~  D ~ - j  ds=O, (6) 

k=t  S~+I 

where S~ +I is one of the surfaces of revolution forming the elementary cell Di,j; m is their 
number. Here, near the curved front we use the first method for forming the cells. The other 
scheme is based on an explicit approximation of the diffusional terms 

m 

o.+, . , . . .+ ,  [ a . l - .  (7) - yl,sS v i , ,  - �9 _ _  ~ 0 ~ ]  as = 0 

8 

and the use of the second method for forming the cells near the curved front. In formulas 
(6) and (7) the integral terms are approximated by finite differences of the first order, 
taking account of boundary conditions (2)-(4). 
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For both differences schemes it can be shown that the error of the approximation of the 

difference schemes ~h satisfies the relationship I~hl < Cob, where h = max {b_r, hz, T}; Co 
is some constant. With satisfaction of the conditions 

O 
ZN< VNl i -- k0[ common for both schemes; (8) 

VLj >* ~.- ~ i,j(1-~ ~) ~r (6); (9) 

V+,j>~D Sh s+,j(1--~) ~r (10) + (7), 

where ~ = i -- VNIN(l -- ko)/D; S k, Si,j  are the areas of the surfaces S~+1; and I k and l N are 
the distance along the normal, on the basis of the principal  of a maximum, the resul t  can be 

n n n with 0 < t < Ls/v for obtained that the error of the difference solution zi, j = Yi,j -- ui,j 

both schemes satisfies the evaluation maxlz~jI<C1h, where C~ is some constant. 
i,S,~ 

For the solution of (6) we use an iteration method of the upper relaxation with succes- 
sive fittings at the lines r i [6]. It can be verified that with the conditions (8)-610) the 
schemes (6) and (7) will be stable. 

With the aim of verification of the algorithms in the case of a flat front, methodo- 
logical calculations were made in accordance with an implici.t scheme for the following initial 
data: L s = i0 cm, R = i cm, D = 0. i cm2/h, v = 0. i cm/h, ko = 0.i, and M = 20. 

The number of points along the length of the ingot N was taken equal to i00 and 200, 
and the values of the time spacing T used were 0.125, 0.5, and 1.0. Experiments showed that 
the change in the spacing hz gives only an inconsiderable difference in the results (on the 
order of 0.1%). The effect of a change in the time spacing was more considerable. A de- 
crease in the value of T leads to a decrease in the number of iterations and to a change in 
the results by approximately 1%. We note that test calculations in accordance with an 
implicit scheme with a somewhat greater calculating time gave approximately identical re- 
sults to the explicit scheme. 

A calculation of processes with a curved front for the investigation of radial in- 
homogeneity was made using an explicit scheme; here the form of the front was given by the 
parabola z = zor 2 + vt -- zo(3R/4) 2 for the following values of the invariable parameters: 
Ls = 4 cm, R = 1 cm, D = 0.i cm2/h, M = 20, and N = i00. The values of the other parameters 
were taken as follows: equilibrium coefficient ko = 0.01, 0.i, and 0.5; crystallization rate 
v = 0.5 and 1 cm/h; and parameter of curvature of front zo = 0.5, 1.0, and 1.5. 

Curves 1-3 of Figs. 2-4 show, for the above values of zo, the dependence of the concen- 
tration of impurity on the radius r for the cross sections z = 0.6, 1.56, and 2.36, respec- 
tively. 

As can be seen from the results, an increase in the curvature of the front leads to an 
increase of the inhomogeneity; the impurity is concentrated at the center of the ingot, while, 
in sections at a distance from the axis of symmetry, the concentration is close to the equi- 
librium value. An increase in the rate of crystallization (see Fig. 4a, b; v = 0.5 and I 
cm/h, respectively) also leads to an increase in the radial inhomogeneity. Depending on the 
value of the equilibrium concentration ko, the distribution of the impurity is a nonmonotonic 
function. The effect of radial inhomogeneity comes out weakly with ko = 0.01 (Fig. 2a, Fig. 
3a, and Fig. 4a) and is more sharply marked with ko = 0.i (Fig. 2b and Fig. 3b). A further 
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increase in the equilibrium coefficient (ko = 0.5, Fig. 2c and Fig. 3c) weakens the inhomo- 
geneity. This is qualitatively in agreement with experiment. 
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